DINOFLAGELLATE NEUROTOXINS RELATED TO SAXITOXIN: STRUCTURE AND LATENT ACTIVITY OF TOXINS B1 AND $B2^{1}$

- F. E. Koehn^a, S. Hall^{*b}, C. Fix Wichmann^a, H. K. Schnoes^a, and P. B. Reichardt^C
- a) Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
- b) Seward Marine Center, University of Alaska, Seward, Alaska 99664
- c) Department of Chemistry, University of Alaska, Fairbanks, Alaska 99701

Abstract: Toxins B1 and B2 from cultured dinoflagellates of the genus *Protogonyaulax* are shown to be the carbamoyl-N-sulfo derivatives of saxitoxin and neosaxitoxin, the structures confirmed by synthesis from the corresponding decarbamoyl toxins.

In the analysis of toxins from cultured *Protogonyaulax* of the Northeast Pacific², we expected to find saxitoxin $(\underline{1})^{3,4}$, neosaxitoxin $(\underline{7})^5$, and their four epimeric ll-hydroxysulfate esters $(\underline{3}, \underline{5}, \underline{9}, \text{ and } \underline{10})^{6-8}$. Although each was eventually found in analyses of various clones, they were generally present at lower concentrations than a family of novel substances which had rather low toxicity until hydrolyzed, under mild conditions, to yield the six toxins previously known^{9,10}. We found¹⁰ two of the new toxins, Cl and C2, to be $\underline{4}$ and $\underline{6}$, the carbamoyl-N-sulfo derivatives of ll α - and ll β -hydroxysaxitoxin sulfate, $\underline{3}$ and $\underline{5}$. Our results² suggest that the new compounds are broadly distributed and have possibly been overlooked in previous studies due to their low toxicity, facile hydrolysis, and altered chromatographic properties¹¹. We now report the structures of toxins Bl and B2 as 2 and 8, the carbamoyl-N-sulfo derivatives of 1 and 7.

Hydrolysis (0.1 M HCl, 100°C, 5 min) of B1 and B2 to <u>1</u> and <u>7</u>, respectively (¹H-NMR, TLC⁹, electrophoresis¹²) and the close similarity of the corresponding ¹H-NMR (270 MHz, D₂O; Table 1) and ¹³C-NMR (50 MHz, D₂O) spectra established the basic ring structures of the toxins. Chromatographic behavior¹³ and electrophoretic comparison¹² with the dications <u>1</u> and <u>7</u> showed that B1 and B2 carry a net charge of +1 in acidic solution, implying the presence of a substituent charged -1. B1 and B2 tested negative for free sulfate, but released inorganic sulfate upon

R4 0 3						Table 1: ¹ H-NMR data for toxins B1 (2) and B2 (8) ^a											
					H-5	H-6		H-10	Η	-10		H-11	H-13		H-13		
				1	4.33,d (1.3)	3.47,dd (1.3,6,	ld 9)	3.20,ddd (8,10,11)	3 (.45,ddd 2.5,10,11)	2.00 , m	3.65,dd (6,12)		3.88,dd (9,12)		
	R1	R2	R3 R3 H H	R4	2	4.34,d (1.3)	3.48,dd (1.3,6,	ld 9.5)	3.20,m) (b)	3	.40,m (b)		2.00 , m	3.72,dd (6,13)		4.00,dd (9.5,12)	
1 2	H H	H H		CONH ₂ CONHSO ₃	<u>7</u>	4.42,d (1.1)	3.70,dd (1.1,6,	ld 6.2	3.18,ddd)(7,10.2,9	3 .7)(.38,ddd 2.7,10.2,	.10)	1.98,m	3.82,dd (6.2,11	.8)	4.00,dd (5.9,11.8)	
3 4 5	н Н Н	н Н 0S03	0S0₃ 0S0₃ H	CONH ₂ CONHSO ₃ CONH ₂	<u>8</u>	4.43,d (1.1)	3.76,dt (1.1,6.	8)	3.24,m (b)	3	.39,m (b)		1.95,m	3.88,dd (6.8,12)	4.14,dd (6.8,12)	
6 7 8 9	H OH OH OH	0S03 H H H	H H H OSO3	CONHSO3 CONH2 CONHSO3 CONH2	 a) Chemical shifts in ppm with reference to CHCl₃ at δ=7.27 as internal standard. Data in parenthesis are coupling constants in Hz. b) Reliable determination of the H-10 coupling constants for 2 and 8 was precluded by partial deuterium exchange of the H-11 catalyzed by 												
10 11 12	OH H OH	ОSO₃ Н Н	H H H	CONH ₂ H H	ac	cetate o oupling	constar	on. it of	Fully exc f 11 Hz fo	hang r <u>2</u>	ed sample and <u>8</u> .	es s	showed a	an H-10	gen	ninal	

hydrolysis to 1 and 7. Combustion analysis of B2 acetate and titration 14 of sulfate liberated by hydrolysis both revealed 1 equivalent of $-SO_3$. By analogy to 6, for which x-ray crystallography had confirmed the substitution, structures 2 and 8 appeared likely for Bl and B2.

To confirm this assignment for B1, decarbamoylsaxitoxin (11), prepared¹² from 1 by hydrolysis, was treated with chlorosulfonyl isocyanate in formic acid at $0^{\circ}C^{15}$. Rapid guenching with cold, aqueous ammonium acetate followed by chromatography 13 gave, as the major product, the expected N-sulfo saxitoxin 2, identical with natural Bl (¹H-NMR, TLC, electrophoresis), and l as the minor product¹⁶. Similar treatment of decarbamoyl neosaxitoxin (12, from 7 by hydrolysis) gave a major product identical (TLC, electrophoresis) to natural B2, and a small amount of 7.

Compounds 2 and 8 were found to have toxicities of 150 and 180 mouse units per micromole which, following hydrolysis⁹, increased to 2400 and 2900 mouse units per micromole, the approximate potencies of authentic 1 and 7^2 .

Acknowledgments: Work was supported by the Alaska Sea Grant College Program (Grant #NA81AA-D-00009), a Graduate Fellowship in Resource Problems (to S. H.), the Wisconsin Alumni Research Foundation, and a Molecular and Cellular Biology Training Grant (to F. E. K.).

REFERENCES and NOTES

- 1. Contribution number 486 from the Institute of Marine Science, University of Alaska.
- 2. S. Hall, to be published.
- 3. E. J. Schantz, V. E. Ghazarossian, H. K. Schnoes, F. M. Strong, J. P. Springer, J. O. Pezanite, and J. Clardy, J. Am. Chem. Soc., 97, 1238 (1975).
- 4. J. Bordner, W. E. Thiessen, H. A. Bates, and H. Rapoport, J. Am. Chem. Soc., 97, 6008 (1975).
- 5. Y. Shimizu, C. P. Hsu, W. E. Fallon, Y. Oshima, I. Miura, and K. Nakanishi, J. Am. Chem. Soc. 100, 6791 (1978).
- 6. G. L. Boyer, E. J. Schantz, and H. K. Schnoes, J. C. S. Chem. Comm., 889 (1978).
- 7. C. Fix Wichmann, G. L. Boyer, C. L. Divan, E. J. Schantz, and H. K. Schnoes, Tetrahedron Lett. 22, 1941 (1981).
- 8. Y. Shimizu and C. P. Hsu, J. C. S. Chem. Comm., 314 (1981).
- 9. S. Hall, P. B. Reichardt, and R. A. Neve, Biochem. Biophys. Res. Commun., 97, 649 (1980).
- 10. C. Fix Wichmann, W. P. Niemczura, H. K. Schnoes, S. Hall, P. B. Reichardt, and S. D. Darling, J. Am. Chem. Soc., <u>103</u>, 6977 (1981).
- 11. Toxins apparently corresponding to $\underline{4}$ and $\underline{6}$ have recently been described: Y. Oshima and T. Yasumoto in Devel. Mar. Biol. 1, Toxic Dinoflagellate Blooms, D. L. Taylor and H. H. Seliger, eds., Elsevier North Holland, New York, 377 (1979); M. Kobayashi and Y. Shimizu, J. C. S. Chem. Comm., 827 (1981).
- 12. F. E. Koehn, V. E. Ghazarossian, E. J. Schantz, H. K. Schnoes, and F. M. Strong, Bioorg. Chem., 10, 412 (1981).
- 13. The charged toxins may be bound to IRP-64 and other carboxylate cation exchange resins, dilute acetic acid eluting 2, 3, 5, 8, 9, and 10 as a group, well ahead of 1 and 7. Isocratic elution from BioGel P2 with 0.1 M acetic acid follows reference 9 for crude dinoflagellate extracts but, when more refined material is applied, 1 and 7 elute at about 75% bed volume and 2, 3, 5, 8, 9, and 10 elute at about 95% bed volume along with unretained small molecules. When applied to BioGel P2 at about pH6, toxins 1-3, 5, and 7-10 bind and may be washed with water to remove the bulk of inert material, but emerge as a tight cluster with little resolution when eluted with dilute acetic acid. Toxins 2 and 8 are resolved from 3, 5, 9, and 10 by isocratic elution from Sephadex G-10 with 0.1 M acetic acid. Deprotonation of the N-1-OH permits 8, 9, and 10 to be eluted from IRP-64 in the ammonium form by 0.1 M ammonium acetate buffer, pH 7.5, while 2, 3, and 5 are retained. 14. J. C. Haartz, P. M. Eller, and R. W. Hornung, Anal. Chem., <u>51</u>, 2293 (1979). 15. H. Tanino, T. Nakata, T. Kanedo, and Y. Kishi, J. Am. Chem. Soc., <u>99</u>, 2818 (1977).

- 16. Freeze-drying and other manipulations of toxins bearing the carbamoyl-N-sulfo substituent are best conducted in the presence of small amounts of ammonium or pyridinium acetate to protect against hydrolysis by trace excess strong acid.
- 17. Anonymous, Official Methods of Analysis, 12th ed., revised, A. O. A. C., Washington, D. C., 319 (1975).

(Received in USA 9 March 1982)